FOR IMMEDIATE RELEASE

Here By Design III: Process and Prototype
New Exhibition October 20, 2007 - January 20, 2008

Curator: James Boyd-Brent, Associate Professor of Graphic Design, College of Design

In the six years since Here by Design 1 (Spring 2001), the first in this series of exhibitions focusing on the creativity of local designers, a great change has occurred in design production—namely, digital fabrication. Here by Design III: Process and Prototype will investigate the nature of this change by looking at some themes that are emerging in contemporary design around the use of digital fabrication and by investigating how digital fabrication is affecting how designers design.

What exactly is digital fabrication?
Most simply, digital fabrication is any process in which something is made digitally. Examples of digital fabrication processes include laser cutting, CNC routing, 3-D printing, and rapid prototyping. Also included are examples of virtual fabrication (where designers create virtual prototypes using software such as form.Z and SolidWorks).

The focus of this exhibition is human ingenuity.
The work of each of the exhibitors provides examples of how digital fabrication helps establish design practice in the “local,” increases the rigor and depth of design practice, and opens up new opportunities for talented designers. Digital fabrication helps designers move through ideas more quickly, helps reduce wasteful use of precious time and materials, and helps to spark ingenuity and reconnect designers with making, and thereby with the driving force of design — making things work. In all of these examples, it’s the human element in the design process—the intuitive, the brilliant—that is enhanced by digital fabrication.

The central idea of Here by Design is that “here” is a hotbed of creativity.
This exhibition, true to the spirit of the first two in the series, seeks to highlight this and give credit to the growing creative class of designers who are trying in various ways to make improvements to our ways of doing things.

In conjunction with the exhibit, Digifab is publishing a knowledge map.
This tool will provide a visual introduction to rapid prototyping techniques, several case-studies, and a map-guide to digital fabrication facilities at the University of Minnesota and around the Twin Cities.

Here By Design III: Process and Prototype will be in the Goldstein Museum Gallery in McNeal Hall on the St. Paul campus and in the HGA Gallery in Rapson Hall on the East Bank Campus.

These programs are generously supported by The McKnight Foundation Special Events Fund.
EXHIBITION DETAILS:

Digital fabrication enables the designer to more rapidly conceive of, demonstrate/explain, and execute an idea, therefore functioning as a “suped up” tool that can have a dramatic effect on design production. We will look at this heightened design effect and chart how, in each of the exhibits in this exhibition, it stimulated new thought in each respective design process.

A major theme in this exhibition is that digital fabrication is a tool in a designer’s toolbox. Digital fabrication doesn’t necessarily mean that the product is both designed and made digitally. It is often a part of the design process, and, to continue the tool analogy, in the hands of experienced and intelligent designers, it stimulates rather than dictates the creative outcome, just as a good tool does. Because digital fabrication is essentially about making, it solidly connects the designer with his or her creative production.

The pressing need in our time is a global acknowledgment of the true value of all our resources—accompanied by a cultural shift to abhorring waste, from our current state of implicitly celebrating it. But is there a cloud hovering over this new technology? Will it help or hinder our efforts to use resources more thoughtfully? Will, for example, the availability of inexpensive 3-D printers result in more waste piling up in our rivers and oceans? Or will this new technology help stimulate the kind of complexity of thought and innovation that’s required for designing our future well-being?

As in previous Here by Design exhibitions, we attempt to show a range of design practice. Examples of work will include the use of new materials and digital printing processes by Banner Creations; the development of a tear duct stent by David Wulfman Andrew Harrison, and Dave Hultman; architect Marc Swackhamer’s award-winning “Drape Wall,” and Vincent James Associate Architects’ use of digital technology in the design of their proposed Clifton Arc Gatehouse project. We will also exhibit examples of each of the main digital fabrication processes.
FOR IMMEDIATE RELEASE

Here By Design III: Process and Prototype
New Exhibition October 20, 2007 - January 20, 2008

VISITOR INFORMATION:

Goldstein Gallery Hours
Monday-Wednesday, & Friday 10:00 am - 4:00 pm
Thursday 10:00 am - 8:00 pm
Saturday-Sunday 1:30 pm - 4:30 pm

Admission and Parking
Admission to the Goldstein Museum of Design is free. The Goldstein Gallery is on the second floor of McNeal Hall on the St. Paul campus of the University of Minnesota. Parking in the nearby Gortner Ramp at 1395 Gortner Avenue is $2.50 per hour (daily maximum of $12.00). Parking on Sundays is free (except for special events). The parking ramp and the Museum are both handicapped accessible.

HGA Gallery Information
Admission to the HGA Gallery is free. The HGA Gallery is adjacent to the auditorium in Rapson Hall on the East Bank campus of the University of Minnesota. The gallery is open during all open building hours. The nearest parking is available at the Church Street garage, the 4th Street ramp, and the Washington Avenue ramp, all for $2.50 per hour (daily maximum of $12.00).

Tours
Groups are invited to schedule a tour of the exhibition at least three weeks in advance. Tours generally last one hour and can be tailored to meet your group’s needs. Tours may include gallery activities or a visit to the Goldstein Museum’s Research Center. Contact us at (612) 624-7434 or gmd@umn.edu to schedule a tour or for additional information.

###